碳纳米管和石墨烯具有较好的力学性能和柔韧性、高电导、高热导等一系列优异特性,将纳米碳材料作为原材料,用于组装/制备新型的高强度、结构-功能一体化的宏观纤维材料已经由大量报道。浙江大学高超教授近期在Nano-Micro Letters 上发表综述文章,总结了碳纳米管基和石墨烯基宏观纤维的组装方法,比较了这些纤维材料的力学性能,分析了力学性能的影响因素,最后一维碳纳米管基和石墨烯基宏观纤维的发展进行了展望。
文章引用信息
图 1 a) 基于聚合物凝聚纺丝法纺丝CFs的实验装置示意图, b)CF的SEM图,c)在衬底上沉积的色带(黑色箭头表示主轴),d) DNA-SWNT纤维的SEM图,e) 覆盖DNA的SWNT管束横截面的放大图像,f)一个10米长的MWNT纤维缠绕在螺旋形阶梯上
图 2 a) 偏光显微镜观察的分散在123%硫酸中的单壁碳纳米管,b) 碳纳米管a -1/2方向的场发射扫描电子显微镜(FEGSEM)图像,c)混炼和挤出整齐的单壁碳纳米管纤维的仪器设备,d)从毛细管中挤出的单壁碳纳米管液体流, e)一个30米长的水固化单壁碳纳米管纤维卷轴
图 3 a) 纤维低倍SEM图, b) 纤维高倍SEM图, c,d) 中空的横截面的SEM图像,e)折叠丝带的SEM图像,f)固体纤维的SEM图像
图 4 a )钨丝浸入单壁碳纳米管胶体溶液的光学照片(上插图;刻度栏5毫米);在撤出过程中形成的单壁碳纳米管纤维(主面板;刻度杆10毫米);下部插入SEM图像是在虚线圈中放大的单壁碳纳米管纤维(刻度杆10毫米)b) SWNT纤维的实验装置和形成机理图
图 5 a) 从独立碳纳米管阵列中拉出的单个CF , b) 碳纳米管阵列的放大图像, c)碳纳米管阵列的SEM图像,d) a)中纱线的扫描电镜图像(插图是一个单线程的CFS的TEM图像),e) CF的低倍SEM图像,f) CF的高倍SEM图像,g)CF在镍丝周围形成一个环,然后扭曲, h)双捻光纤的SEM图像
图 6 a) 人的头发和两种生长的单壁碳纳米管纤维的光学图像,b) CF的低放大倍的SEM图像,c) CF的高放大倍的SEM图像,d) 单壁碳纳米管纤维的顶视图的HRTEM图像,e) 主轴对准25的直接纺丝工艺图,f) 炉轴线正常时的直接纺丝工艺图,g) 从主轴(左)到第二个主轴(右)CFS缺口照片,h) 低放大率下的CF的扫描电镜图像,i) 高放大率下的CF的扫描电镜图像,j) 从炉中取出的扭曲的CF,k) CFs弯曲引起的扭结的SEM图像,l) CFs反手结的SEM图像
图 7 a) 2mm厚的碳纳米管薄膜制成的200nm厚CF的SEM图像,b) 左边示意图说明了加捻过程对薄膜延伸率的影响,右边分别为薄膜的无应变和应变部分的SEM图像,c) 弹簧状CNT的纺纱工艺图解,d) 一个4.4mm长的、高度一致的、完全排列的绳索的SEM图像,e) Fermat型卷轴的SEM图像,f) Archimedean型卷轴的SEM图像,g) 双阿基米德型卷轴的SEM图像,(插图中分别可以说明);h,i) Si3N4NT@MWNT的双卷纱的SEM图,较亮的区域为多壁碳纳米管,j) TiO2@MWNT纱的SEM图,k) 95% LiFePO4@MWNT纱反手结的SEM图,l) 两个88% SiO2@MWNT纱之间的卡里克弯结,m) 缝在芳纶织物上的85% TiO2@MWNT纱的照片
图 8 a) 拉伸-干燥纺丝工艺示意图和纺线状DWNT纤维的光学图像,b,c) CNT棉纤维的扫描电镜图像,d) 用金刚石拉丝模拉制CNT薄膜的纤维成形示意图
图 9 a) 具有手性相指纹结构的GO水性分散体的POM观察,b,c) GO手性液晶的低温SEM图像和POM织构,d) GF的紧结,e,f) 使用多孔喷丝板生产GO纱线的照片,g) POM观察的凝胶态光纤GO的双折射,h) GO纤维的SEM图,i) GO纤维的放大截面
图 10 A)GO纤维组装过程的SEM图像,B) 湿法纺丝GO纤维的装置示意图,C) 湿法纺丝GO纤维的组装机理
图 11 a) GO多孔纤维的制备方案,f) GO中空纤维的制备方案,b) GPFs折叠的SEM图,c) GPFs拉伸的SEM图,d) GPFs断口形貌的SEM图,e) GPFs的核壳结构模型图,g) 凝固浴中GO-HFs的照片,i) 自然干燥的GO-HFs的照片,h) 自然干燥的GO-HFs的SEM图,j) 链状的GO-HF的照片
图 12 a)同轴纺纱过程示意图,b) 湿GO@CMC纤维的放大图,d) GO@CMC纤维的放大图,c) 湿GO@CMC纤维的POM图表明核鞘结构和核心中对齐的GO表面,e) RGO@CMC同轴光纤的宏观照片,f) 两种完整的棉纤维同轴纤维,g) 基于两同轴光纤制作的超级电容器装置,h-j) 同轴光纤的扫描电镜图像,k) 横截面扫描电镜图像,l) 一个两层YSC侧视图,m) 一个两层YSC结的扫描电镜图像
图 13 a-e) LCST策略示意图,f,g) 得到的复合纤维,h,j) GO-HPG纤维的断口形貌,k,i) 拉伸变形机理模型,m) GO-SA纤维的侧视图
图 14 a) 附在硅衬底上的贻贝照片,b) 通过胶粘剂增强的一维排列的CFs的示意图,c) 纤维纺丝过程的扫描电镜观察,d) 纺布的扫描电镜观察,e) 致密CF的高放大倍率的SEM图像,f)h-PEI-C处理CF,g,h)CFs的力学曲线
长按二维码阅读全文
Nano-Micro Letters《纳微快报》
Nano-Micro Letters《纳微快报》是严格评审的国际英文学术期刊,快速报道与纳米/微米尺度相关的高水平研究成果和评论文章,尤其关注从纳米到微米的自下而上的工作,旨在推动纳微科技的发展和应用。期刊与Springer合作,以Open Access出版。采用国际一流的Scholarone Manuscripts编审系统。目前,NML期刊已被SCI、EI、SCOPUS、DOAJ、知网、万方等数据库收录。最新影响因子达到了4.849,材料学科和物理学科位于Q1区。2014和2016年连续入选“中国科技期刊国际影响力提升计划”(D类和B类),2016-2018年入选“上海市高水平高校学术期刊支持计划(A)”。2015和2016年均获“中国最具国际影响力学术期刊”,2016年获“2016年全国高校杰出科技期刊奖“和”上海市高校精品科技期刊奖”。
期刊执行严格的同行评议,提供英文润色、图片精修、封面图片设计等服务。出版周期1-8周,高水平论文可加快出版。所有文章在期刊网站、Facebook、Twitter、微信、微博、科学网博客等同步推出。欢迎关注和投稿。
联系方式:
Editorial Office of Nano-Micro Letters
Tel: 86-21-34207624
E-mail: editorial_office@nmletters.org
APP: nano-micro letters
Web: springer.com/40820 & nmletters.org
Facebook: facebook.com/nanomicroletters
Twitter: twitter.com/nmletters
WeChat: nanomicroletters
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 综述:一维宏观纳米碳纤维的组装和力学性能