Nano-Micro Letters (2021) 13: 194
https://doi.org/10.1007/s40820-021-00695-3
TENG转速从100 r/min增加到500 r/min时,电流15.6 μA增加到48.2 μA,而电压基本维持在510 V左右,电荷量随速度的加快没有变化,基本稳定在0.153 μC左右(图1f-h)。为了评估TENG的输出功率,通过将其与不同的外部电阻连接来测试输出电流(图1i),当转速为100 r/min时,输出电流随着外电阻的增大而减小。在电阻20 MΩ时,输出功率迅速达到最大峰值25.48 mWm⁻²。最后,采用了1 μF-100 μF的一系列电容器来测试TENG的充电能力。如图1j所示,1 μF电容器经过5秒快速充电到27.8 V。随着电容的增加,充电速度降低,发生缓慢充电过程。在实际应用中,TENG的输出稳定性至关重要。如图1k所示,TENG在连续循环16000次后,输出电压仍然比较稳定,说明TENG具有较强的稳定性。
图1. (a) TENG示意图, (b) 锭子和(c) 转子的图片,(d) TENG (I-III)工作原理示意图;(e) COMSOL软件模拟TENG在三种不同工作状态下的电位分布图。TENG输出性能:(f) 短路电流,(g) 开路电压,(h) TENG在不同转速下的电荷量,(i) TENG在100 r/min时的电容充电能力,(j) 100 r/min时不同外负载电阻下,测量的TENG的电流和面电荷密度,(k) TENG循环稳定性。
本文中采用hummer法制备氧化石墨烯,水热制备CDs-TNs光催化剂,为了克服粉体光催化剂在降解途中不易回收等缺陷,采用石墨烯气凝胶为基底,在不影响光催化剂活性的前提下,一步法在制备石墨烯气凝胶过程将CDs-TNs通过水热法引入到该气凝胶(图2a)。SEM结果表明氧化石墨烯具有光滑的二维结构表面,同时,3DGA和3DGA@CDs-TNs气凝胶不仅呈现出较大的外观面积,而且呈现出由随机分散的氧化石墨烯纳米片组成的交联孔的空间网络(图2b-d)。TEM结果表明石墨烯具有超薄薄片和不规则折痕(图2e),3DGA呈现褶皱结构(图2f)。图2g为3DGA@CDs-TNs气凝胶的TEM图像,可以看出CDs-TNs催化剂很好地分散在3DGA表面。3DGA@CDs-TNs气凝胶的EDS mapping测试(图2h-l)进一步证明了C、N、O、Ti元素分布在整个3DGA气凝胶中。此外,通过对3DGA@CDs-TNs光催化剂的XPS光谱测试,进一步证明了3DGA@CDs-TNs气凝胶中C、N、O、Ti元素的存在(图2m-p)。
图2. (a) 3DGA@CDs-TNs光催化剂合成示意图;扫描电镜图:(b) GO,(c) 3DGA,(inset: 3DGA),(d) 3DGA@CDs-TNs,(inset: 3DGA@CDs-TNs)。TEM图:(e) GO,(f) 3DGA,(g) 3DGA@CDs-TNs,(h-l)为3DGA@CDs-TNs的C、N、O、Ti元素的EDS mapping图。3DGA@CDs-TNs光催化剂的XPS谱图:(m) 全谱图,(n) C1s, (o) O1s, (p) Ti2p。
CDs在30.5°处的衍射峰归因于(200)无序类石墨。对于TNs和CDs/TNs复合材料,CDs沉积并未影响TNs的晶格结构。氧化石墨烯样品在7.7°处有明显的峰,归因于氧化石墨烯的(002)面。水热过后,GO峰几乎消失,在16.6°处出现一个宽而明显的3DGA峰,说明GO通过水热途径成功转化为还原氧化石墨烯。对于3DGA@CDs-TNs光催化剂,由于3DGA负载了CDs-TNs催化剂,因此其层间距增大,特征峰向高角度移动(图3a-b)。瞬态光电流响应和EIS(图3c-d)表明3DGA@CDs-TNs在可见光照射下可以发生电子移动,形成光电流,同时产生超氧自由基和羟基自由基,直接表明3DGA@CDs-TNs具有较高光催化活性(图3e-f)。
图3. 样品的XRD谱图:(a) CDs、TNs、CDs-TNs,(b) GO、3DGA、3DGA@CDs-TNs光催化剂;3DGA@CDs-TNs光催化剂在可见光照射下的EIS曲线(c)和i-t图(d);可见光照射下3DGA@CDs-TNs的ESR自旋捕获曲线:(e) DMOP-·O₂⁻和(f) DMOP-·OH。
通过降解两种具有代表性结构的污染物,偶氮染料-DB和三苯基甲烷染料-BG来评价TENG和光催化剂的降解性能(图4)。不同方法降解BG溶液(TENG,3DGA@CDs-TNs光催化剂和TENG/3DGA@CDs-TNs)在不同反应时间下曲线如图4a-c所示。结果表明随着反应时间的增加,BG的降解速率增加,624 nm处的吸收峰几乎完全消失,这证实了TENG、3DGA@CDs-TNs光催化剂和TENG/3DGA@CDs-TNs对BG均具有降解效果。同时,在425 nm处的峰先增大后减小,表明有机碎片分解为小分子。特别的,在TENG/3DGA@CDs-TNs实验中,吸附峰在降解前20 min迅速下降,40 min后降解趋于平缓,说明BG的降解效率在很大程度上取决于TENG和3DGA@CDs-TNs光催化剂的耦合作用。图3a-c中的插图照片显示,BG水溶液经降解后几乎无色。图4d-f描绘了三种方法降解DB的谱图。随着反应时间的延长,586 nm处的主峰减小,DB溶液分解后颜色几乎消失,表明DB共轭结构完全破坏。
图4. (a-c) BG经3DGA@CDs-TNs光催化剂、TENG和TENG/3DGA@CDs-TNs降解后的特征吸收变化及残留BG溶液照片(插图);(d-f) DB和残留DB溶液照片(插图)。
为了直接比较三种方法对污染物的降解率,我们对比了3种方法的去除率和降解动力学(图5a-f)。TENG实验结果表明,在转速为300 r/min时,BG的有效降解率为59.59%。3DGA@CDs-TNs光催化剂在可见光照射2 h后的去除率为81.66% (BG)。在TENG和3DGA@CDs-TNs光催化剂的存在下,BG的分解显著增强(88.26%, 40 min)。而TENG、3DGA@CDs-TNs光催化剂和TENG/3DGA@CDs-TNs对DB的分解效果较好,降解率分别为59.2% (6 h)、73.23% (3 h)和89.6% (1.5 h)。表明TENG与3DGA@CDs-TNs光催化剂结合后,具有更高的污染物降解能力。这是由于TENG提供了偏压和电流,可以建立电场,加速载流子的分离和转移,从而提高了降解效率。此外,在混合系统中,3DGA表现出电子收集和传输的优点,能够有效地抑制光生电荷的复合。此外,DB和BG的降解遵循准一级动力学。TENG、3DGA@CDs-TNs光催化剂和TENG/3DGA@CDs-TNs系统的降解动力学参数表明TENG/3DGA@CDs-TNs对BG和DB染料的反应速率常数最高,分别为0.01011和0.01338。和TENG相比,TENG/3DGA@CDs-TNs体系降解BG和DB效率分别提高了6.65倍和5.74倍。与3DGA@CDs-TNs光催化剂相比,TENG/3DGA@CDs对BG和DB的降解效率分别提高了2.81倍和1.99倍。结果表明:与TENG和3DCA@CDs-TNs光催化剂相比,TENG-3DGA@CDs-TNs光催化剂对污染物的降解率最高。
图5. 3DGA@CDs-TNs光催化剂,TENG和TENG/3DGA@CDs-TNs对BG (a, b)和DB (c,d)的降解及降解动力学曲线。不同转速下TENG对(e) BG,(f) DB的降解速率。
IV 污染物可能性降解途径
此外,还提出了BG的合理去除途径(图6b)。简而言之,母体BG上的乙基首先被自由基氧化,转化成m/z=272.31的化合物。其次为m/z=198.21,m/z=182.21,m/z=106.12为m/z=272.31的裂解。然后发生开环和矿化反应,通过BG和n-脱乙基片段的分解产生小分子。综上所述,污染物和不稳定中间碎片最终可以分解为CO₂、H₂O和无毒小分子。
图6. 可能性降解途径:(a) DB,(b) BG。
王中林
本文通讯作者
佐治亚理工学院终身教授
中国科学院北京纳米能源与系统研究所所长
发明摩擦纳米发电机,并发现和突破确立了原理和技术路线图。开创了压电电势来研究压电光电子学和压电光电子学领域,在智能MEMS/NEMS、纳米机器人、人机界面等领域具有重大意义。
▍主要研究成果
▍Email: zlwang@gatech.edu
董凯
本文通讯作者
中科院北京纳米能源与系统研究所 副研究员
自主式供电和自驱动传感智能纤维材料的设计和开发、纤维基可穿戴能量采集和自充电器件的设计、多功能自驱动传感纤维及织物的开发与应用。
▍主要研究成果
▍Email: dongkai@binn.cas.cn
申申
本文第一作者
江南大学 博士生
纳米材料及功能光催化材料的制备,智能可穿戴纺织材料的研究与开发,自驱动摩擦纳米发电机及其在传感上的应用。
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 王中林院士课题组:基于摩擦纳米发电机光电-催化耦合作用的高效废水净化系统