Nano-Micro Letters (2021)13: 64
https://doi.org/10.1007/s40820-021-00592-9
2. 基于改进的隧道理论模型,提出了分析导电路径数和距离变化的一种有效方法。
图2对比了RS-100和RS-200应变传感器样品的灵敏度及机械性能。对于应力-应变行为,RS-100和RS-200应变传感器的应力随着应变的增加而逐渐提高。RS-100和RS-200型应变传感器在150%应变下的应力值分别为3.79和4.77 MPa。且RS-100的最大拉伸应变为155%,RS-200的最大拉伸应变为225%。对于两种不同的应变传感器,其响应能力在0-70%的应变间呈线性增加,对应于RS-100和RS-200的GF分别为17.5和9.1。经过一个过渡区后,RS-100和RS-200样品达到了最大拉伸。较大的形变导致了响应能力的剧烈变化,应变达到155%时,RS-100的GF为8962.7,而RS-200的GF仅为2431.0。
通过研究TPU/CB应变传感器的微观形貌对不同收集装置转速对传感器灵敏度产生影响进行了解释。图3显示了RS-100和RS-200应变传感器上纤维直径和支架间隔面积的分布。如图3a-d所示,当转速从100 rpm增加到200 rpm时,相应的TPU纤维直径明显减小。从正态分布拟合直方图(图3a, c)可知,RS-100样品的纤维直径主要分布在2.28±0.04微米的区间值内,而RS-200样品的分布区间更集中在1.77±0.05微米。在图3e、f中,对支架网络结构间距的面积进行了统计和计算。在相同放大倍数下,RS-100样本的网络数量小于RS-200样本的网络总数。而RS-100样品的间隔面积大于RS-200样品的间隔面积(图3f, h)。从图3e、g中支架网状结构间隔面积正态分布拟合来看,RS-100的值为36.58±1.43平方微米。而RS-200的正态分布值为16.91±1.33平方微米,仅为RS-100的一半。对于RS-100样品,较厚的TPU纤维为CB和TPU的结合提供了较大的基体。同时,三维立体网状结构使得CB粒子之间的隧穿距离拉近,这意味着以TPU纤维为基础有更多的机会构建导电微通道。当传感器被拉伸时,作为RS-100“桥梁”的立体支架网,更容易被拉伸和扭曲,导致导电通路断裂,并以电阻变化的形式快速响应。相反,RS-200样品由于其密集的支架网络结构和抗外加应力性能较低,敏感性较低。因此,通过调节采集装置的转速来制作灵敏度可控的TPU/CB应变传感器成为一项具有很高可行性的研究。
TPU/CB应变传感器具有极佳的电敏感性能。如图4a,在1%应变下,TPU/CB应变传感器的瞬态阶跃应变响应时间小于60毫秒,这是文献中报道的最小时间之一。在图4b中,随着弯曲样品的弦长从40 mm减小到10 mm,传感器的响应能力单调增加,表明该传感器对弯曲变形也具有良好的检测能力。图4c、d描述了不同应变下TPU/CB应变传感器的电流-电压(I-V)特性。无论是在微应变(0-9%)还是在大应变(10-200%)下,I-V曲线都严格符合欧姆定律。当电压从−5 V逐渐增加到5 V时,TPU/CB应变传感器的I-V线性曲线很好地符合欧姆定律。这表明TPU/CB应变传感器具有很高的可靠性和广泛的应用范围,对人体运动监测具有重要意义。图4e展示了最近报道的典型应变传感器的主要性能指标作为对比,说明该工作制备的TPU/CB应变传感器性能十分优越。
对于应变传感器长期工作及高频率下的稳定性也是重要的性能。图5a系统研究了不同应变(10%、30%、50%和100%)循环拉伸下的电循环响应。结果表明,TPU/CB应变传感器对循环加载具有良好的连续稳定响应。在不同的循环中,相同负载下的响应能力几乎没有变化,这是由于导电网络的破坏相似,说明了TPU/CB应变传感器的灵敏度和稳定性。图5b为TPU/CB应变传感器在最大应变为10%、20%、30%、40%、50%、60%、70%和80%的逐步循环变形过程中的传感器响应实验,说明TPU/CB应变传感器具有良好的恢复能力。详细研究了拉伸速度对柔性TPU/CB应变传感器的影响。如图5c所示,当测试速率从5增加到50 mm/min时,TPU/CB传感器保持稳定。作为柔性应变传感器,该特性对于在不同外界刺激下获得可靠的响应至关重要。如图5d所示,对TPU/CB应变传感器的电响应进行了长期工作寿命(10,000次加/卸载循环)的测试,表明该传感器具有极高的稳定性。一言以蔽之,该TPU/CB应变传感器同时具有高灵敏度、优异的拉伸性能、快速响应、多功能和优异的重复性,在实际应用中具有良好的再现性和耐久性。
本工作采用理论方法分析其力学性能,改进了基于隧道理论的模型来描述阻力随应变的相对变化(公式1)。同时,提出了基于该模型的两个方程公式2和公式3,为分析相邻导电粒子的导电路径数和距离的变化提供了一种有效而简单的方法。
Dirk W. Schubert
本文通讯作者
德国埃尔朗根-纽伦堡大学 教授
高分子材料成型加工、高分子物理。
▍主要研究成果
▍Email: dirk.schubert@fau.de
▍个人主页
刘宪虎
本文通讯作者
郑州大学 副教授
高分子材料成型加工及其功能化。
▍主要研究成果
▍Email: Xianhu.liu@zzu.edu.cn
▍个人主页
王昕
本文第一作者
埃尔朗根-纽伦堡大学 博士研究生
高分子材料成型加工、柔性传感器等。
Nano-Micro Letters《纳微快报》是上海交通大学主办、Springer Nature合作开放获取(open-access)出版的英文学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, commentary, perspective, letter, highlight, news, etc),包括微纳米材料的合成表征与性能及其在能源、催化、环境、传感、吸波、生物医学等领域的应用研究。已被SCI、EI、SCOPUS、DOAJ、CNKI、CSCD、知网、万方、维普等数据库收录。2019 JCR影响因子:12.264。在物理、材料、纳米三个领域均居Q1区(前15%)。2019 CiteScore:12.9,材料学科领域排名第4 (4/120)。中科院期刊分区:材料科学1区TOP期刊。全文免费下载阅读(http://springer.com/40820),欢迎关注和投稿。
E-mail:editor@nmletters.org
Tel:021-34207624
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 柔性超薄高灵敏度TPU/CB应变传感器及其建模分析