Nano‑Micro Lett. (2021)13:18
https://doi.org/10.1007/s40820-020-00533-y
2. 生物传感器必须实现定量输出,以获得更准确和便捷的结果。
3. 小尺寸检测平台的开发可实现在手机APP、LFA、生物传感检测技术等方面的应用。
图1. 人类冠状病毒的动物来源(自然宿主和中间宿主);感染SARS-CoV-2的患者的临床表现;以及常见的冠状病毒及其结构。
图2. SARS-CoV-2复制周期示意图。
与其他病毒特别是呼吸道病毒相比,新型冠状病毒SARS-CoV-2具有很高的传染性,可以通过近距离接触传播、飞沫传播甚至环境传播。尤其是无症状病毒携带者进一步增加了病毒的传染风险。针对新冠肺炎的这些特点,设计针对该病毒的特异性诊断方法尤为重要。
图3. SARS-CoV-2不同检测技术发展概况。
此外,临床标本中冠状病毒RNA的检测需要专业仪器和RNA提取纯化试剂盒,因为细胞RNA也是与病毒RNA一起提取的,这会干扰病毒的扩增和检测机制。因此,该测试不能用作快速测试。另外,考虑到RNA基因组的不稳定性以及RNA的收集和提取方法,假阴性的机会也会增加。而且,RT PCR测试不能判断患者是否接触过这种疾病并已经康复,或者他们是否更有可能感染这种疾病。冠状病毒还可以使其基因发生突变,这可能会使引物无法检测其特定的目标。然而,检测病毒基因组中的保守区可以改善问题的发生率,例如检测在大多数冠状病毒基因中都很保守的5’UTR区。
LAMP技术也用于使用逆转录酶(RT)和称为RT-LAMP的DNA聚合酶来检测RNA序列。放大的产物可以用光度法测量,直观地显示副产物焦磷酸镁在溶液中沉淀造成的混浊。溶液中的任何变化都可以用肉眼或通过使用SYBR绿等荧光染料进行非常简单的光度技术来观察。这项新技术正被广泛用作检测病毒感染的一种强有力的替代方法。
在之前的应用中,RT-LAMP方法被用来在63°C的反应温度下在11分钟内检测到高致病性冠状病毒,如SARS-CoV,这有助于在2003年SARS-CoV暴发期间快速诊断这种感染。LAMP方法有可能成为检测新型冠状病毒SARS-CoV-2及其相关病态新冠肺炎的装置的候选方法。目前已经有团队设计了一些新的RT-LAMP方法来检测新冠肺炎的病原体,可以在63℃下30分钟内完成检测。甚至还有团队设计出的方案中,检测时长只需要15分钟左右。这种新的方案会更实用,既加快了检测过程,又方便了检测。总而言之,LAMP技术最重要的优点是它提供的时间更少,省去了耗时的过程,并且需要恒定的温度,从而省略了PCR技术中最关键的步骤——热循环器步骤。
除优点外,LAMP技术也有一些限制其应用的局限性。LAMP技术使用引物组(在4到6个数字之间),并针对单个DNA或RNA的几个区域,所以这些引物的设计需要高能力和先进的工具和软件,这些工具和软件比PCR技术要耗时和困难得多。LAMP的其他局限性包括需要使用带有退化序列的引物来检测感染,特别是不同类型的病毒,这只有通过使用PCR检测作为诊断技术才是可行的。LAMP技术中每个靶的大量引物极大地增加了在这一检测过程中引物-引物相互作用的可能性,与PCR相比,这可能会对检测的特异性产生显著影响。LAMP技术的另一个主要缺点和局限性是DNA产物的连续存在,这会导致在凝胶电泳步骤之后出现几条带,而不是在凝胶上有一条带,这使得很难检测到每一条带。
压电弯曲平面波(FPW)是一种高灵敏度、高灵敏度的超灵敏诊断仪,可以测量振动元件的质量。这些微型器件通常是通过在材料表面或具有压电特性的衬底上形成换能器来创建的。为检测SARS冠状病毒,研制了便携式微型FPW系统。以人血管紧张素转换酶2(HACE2)为功能性受体,研制了检测SARS-S蛋白的功能化FPW生物传感器(图5)。
基于纸张的DNA比色传感器可作为选择性、灵敏、快速、简便的MERS冠状病毒cDNA检测的替代方法(图6)。纳米颗粒呈现出高度复杂的规格,使它们能够成为任何新颖和有前途的生物创新的一部分。例如,它们的大小和形状可以改变,并且它们的大表面提供了将各种化学基团合并为可用结合位点的平台。正因为如此,通过多重相互作用和主动靶向成像来感知和诊断病毒感染,改变这些纳米材料对靶分子位点检测的生物学功能是可能的。最常见的用于病毒感染治疗或检测的金属纳米粒子有银纳米粒子、金纳米粒子、二氧化硅和介孔纳米粒子、碳纳米管、氧化铁纳米粒子等。
8.1 抗体模拟蛋白(AMP)生物传感器
基于AMP(纤维连接蛋白)为捕获剂的纳米线生物传感器被引入到SARS冠状病毒的检测中,该传感器对核衣壳蛋白(N)蛋白有很高的亲和力。该蛋白具有很强的抗原性,可能成为一种合适的诊断生物标志物。研究的结果表明,与其他诊断技术如qRT-PCR和ELISA方法所需的较长时间(几个小时)相比,N蛋白可以在亚纳米级的浓度下检测到,反应时间短(~10 min),并且不需要任何必要的多步分析。这份研究展示了所制造的纳米生物传感器作为一种精确、合适和快速的手段来检测作为SARS-CoV感染生物标志物的N蛋白的能力(图7)。
8.2 融合蛋白SPR传感器
如图8,这里开发了另一种基于SPR的生物传感器,可使用重组蛋白将金结合多肽(GBP)与SARS冠状病毒表面抗原(SCVme)遗传融合而制成,以轻松检测SARS。在这种制备中,具有高金结合亲和力的GBP结构域作为金表面的锚定部分,而SCVme结构域作为识别配体用于检测SCVme抗体。SPR分析表明,融合蛋白通过GBP简单而牢固地固定在金的表面,不需要复杂的表面化学修饰,为抗SCVme的诊断提供了一个独特的、高稳定性的传感平台。
图8. GBP-E-SCVme和Anti-SCVme在金微图形上连续结合的示意图。
最近,有研究介绍了一种基于侧向流动免疫分析的便携式快速检测装置,它可以在15 min内同时检测感染患者血液中的SARS-CoV-2 IgM和IgG抗体,可以区分不同疾病阶段的患者。侧向流动测试,也称为侧向流动免疫色谱分析,是一种简单直接的纸基设备,其设计目的是识别流体样本中客观分析物的存在,而不需要任何特定和过高的硬件。
另外,电化学免疫传感器具有灵敏度高、成本相对较低、使用方便、响应时间短和小型化的可能性等优点,已被认为是一种极具吸引力的选择。最近,一种新的基于电化学免疫传感器的间接竞争检测方法被引入到MERS-CoV病毒的检测中。该生物传感器是基于固定化的MERS-CoV蛋白与游离病毒之间的间接竞争,在由金纳米颗粒改变的碳电极(DEP)阵列上对样品(图9)添加的抗体进行固定数量的竞争。该免疫传感器是在DPE阵列上研制的,可以同时快速检测各种类型的冠状病毒。
SARS-CoV核衣壳蛋白(N)是含量最丰富的结构蛋白,具有准确、灵敏地检测病毒的识别标志作用。筛选出一种高亲和力的RNA适配子,它能与N蛋白结合,解离常数为1.65 nM。结果表明,所选适配子可以选择性地鉴定在N蛋白的C区,具有很高的特异性。分离的核酸适体可以作为N蛋白分子的捕捉剂,用于制备基于核酸适体的化学发光免疫分析和纳米阵列核酸适体。所制备的核酸适体-抗体杂交免疫分析方法可检测低水平的N蛋白(2 pg mL⁻¹),具有较高的灵敏度和选择性。该适配子-抗体联合免疫分析法可用于SARS-CoV N蛋白的快速检测,具有较高的灵敏度。
N蛋白是早期检测SARS冠状病毒感染最重要的抗原之一。为快速诊断SARS冠状病毒N蛋白,设计了一种基于量子点(QDs)连接RNA适体平台的高灵敏度、高特异性光学生物传感器。量子点是半导体材料中的一种胶体纳米材料,与传统的荧光团相比,量子点具有荧光寿命长、稳定性高、发射光谱可调等独特的光学性质,在纳米医学领域,尤其是成像系统中引起了极大的关注。为此,固定在玻片表面的SARS-CoV N蛋白可以有效地与量子点偶联RNA适配子杂交,产生荧光信号。荧光信号的强度与SARS N蛋白的浓度有关。这种基于光学量子点-RNA适体芯片的小型化装置可以检测浓度低至0.1 pg mL-1的SARS-CoV N蛋白。该图形化SARS-CoV N蛋白检测方法具有灵敏度高、准确度高、简便易行等优点。
目前,由于缺乏任何快速、可用和可靠的检测方法,导致新冠肺炎传播成为一个可怕的全球性危机。本文介绍了各种类型冠状病毒的几种重要检测方法,包括临床检测方法和基于传感器的检测方法:
1)以免疫分析为基础的方法,如ELISA,是检测各种病毒来源的抗原或其相应抗体的常用方法,用于诊断疾病或确定疫苗接种的效率。但SARS-CoV-2 IgG/IgM的敏感性仍有待研究。结果受阻是严重的问题之一,可能是由于一系列问题(假阴性、噪音、非特异性反应)造成的。一般来说,ELISA试剂盒价格昂贵,需要熟练的人员进行操作使用设备、解释和报告结果。这些挑战需要开发其他方法来克服这些问题。
2)免疫-聚合酶链反应(IPCR)是一种既利用抗体-抗原的特异性又利用PCR的敏感性的方法。ELISA的灵敏度不足以鉴定低抗体的病毒蛋白,它可以检测任何蛋白,PCR不利用抗体,不能直接用于病毒蛋白的检测。IPCR可重复检测,可提高从血清/尿液中检测皮飞克分析物的灵敏度(10到1000倍),同时由于ELISA和PCR组合(通过抗体-寡核苷酸结合物)提供了多重选择。
3)病毒的精细检测和计数是由一种名为实时RT-PCR的优秀工具完成的,其中通过使用SYBR Green或许多荧光探针化学试剂对每个周期产生的改进产物进行定量,以诊断SARS-CoV-2;尽管RT-qPCR具有特异性,但由于漏诊的严重后果,其假阴性率不容忽视。
4)在分子方法和PCR或病毒疾病识别之间研究的其他方法中,基于LAMP的方法因其众多优点而具有重要意义。LAMP检测最显著的优点是使用较少的设备、可用、廉价、快速检测以及技术上可靠的测试但LAMP反应的假阳性还需要进一步研究。
5)CT扫描和RT-qPCR对SARS-CoV-2的诊断有重要意义;大多数临床医生建议CT扫描应作为一种必要的辅助诊断方法。由于RT-qPCR筛查阴性、临床怀疑感染的患者比RT-qPCR更敏感,因此反复RT-qPCR检测与胸部CT扫描相结合可能是有帮助的。
6)基于免疫传感器的技术的设计和使用完全是为了消除旧的临床方法的缺点,因此具有重要的意义。它们具有几个优点,包括快速检测、低成本、可获得性以及能够检测所需材料的低浓度。这些技术也适用于检测冠状病毒颗粒的几个部分,可以解决冠状病毒变异和假阴性结果的问题。LFA(侧向流动分析)是一种更重要、更有吸引力的检测设备,具有广泛的应用前景。它们能提供的重要好处是测试过程简单,样品量要求低,分析速度快,不需要专家人员,性能成本低,使用方便,而且性价比高。
7)简而言之,开发具有这些特征的医疗点生物传感器和纳米传感器可以提供在人群中快速筛查SARS-COV2病毒的机会,并限制病毒的传播。
Yasin Orooji
共一&通讯作者
南京林业大学 教授
催化,膜应用,纳米复合材料和纳米生物技术。
▍主要研究成果
▍Email: yasin@njfu.edu.cn
Hassan Karimi-Maleh
共一&通讯作者
电子科技大学 教授
电化学传感器,DNA和酶生物传感器的开发,纳米材料的合成和表征,水处理和去除工艺,甲醇和乙醇燃料电池系统,药物输送,离子液体,导电聚合物,表面电化学和腐蚀。
▍主要研究成果
▍Email: hassan@uestc.edu.cn
撰稿:《纳微快报》编辑部
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 综述:新冠及其他冠状病毒即时检测方法研究进展