可充电锌-空气电池是一种很有前途的能量转换装置,然而其所依赖的氧还原(ORR)和析氧反应(OER)动力学过程缓慢,严重制约了此类器件的综合性能。
Sundaram Chandrasekaran†*, Rong Hu †, Lei Yao, Lijun Sui, Yongping Liu, Amor Abdelkader, Yongliang Li, Xiangzhong Ren and Libo Deng*
Nano-Micro Letters (2023)15: 48
https://doi.org/10.1007/s40820-023-01022-8
本文亮点
1. 以环糊精为配体、碱金属为配位中心开发了一种金属有机框架,并用多种过渡金属取代碱金属、进而碳化制备了一系列M-N-C催化剂。
2. 该类催化剂同时包含金属单原子与纳米颗粒,两种活性中心相互作用,赋予其优异的ORR/OER双功能催化活性。
3. DFT计算表明,Co-NP和Co-SAC的d电子密度的相互调节共同降低了反应能量势垒,从而通过其对反应中间体的快速吸附/脱附能力提高了ORR/OER动力学。
内容简介
氧还原(ORR)和析氧反应(OER)缓慢的动力学过程严重制约了锌空气电池的性能及其广泛使用。深圳大学邓立波&桂林理工大学Chandrasekaran采用一种新型环糊精基MOF材料为前驱体,制备了一系列包含金属单原子与纳米颗粒的M-N-C催化剂。借助催化剂中两种类型的活性位点相互作用,其显示出优异的ORR/OER双功能催化活性。同步辐射X射线吸收光谱和密度泛函理论模拟表明,金属Co纳米颗粒与原子Co-N4位点之间的强相互作用可以增加费米能级附近的d电子密度,有效优化ORR/OER中中间体的吸附/解吸,从而提高双功能电催化性能。基于Co@C-CoNC的锌空气电池的最大功率密度达到162.8 mW cm⁻2,高于商业催化剂Pt/C+RuO₂的组合。在10mA cm⁻2的恒电流放电时,电池可在约140小时内稳定输出1.2V电压。
图文导读
I 催化剂的制备与形貌
以 γ-CD 为配体,钠(Na)为配位中心制备了 CD基 MOF。然后将一系列过渡金属(M=Co、 Fe 或 Cu)浸渍到 MOF 中。这些金属中的一部分取代了微晶中的原始 Na 位, 另一部分金属离子在骨架中自由吸附,之后将 M 负载的 CD-MOF 碳化,从而在热解碳中产生单原子位点以及包含金属的纳米颗粒(NPs)。分子动力学理论研究表明, CD单元之间聚集,存在三种可能的方向,包括头对头(H-H)、尾对尾(T-T)和头对尾(H-T)结构(图 1a)。所制备的 CD-MOF 样品的场发射扫描电子显微镜(FE-SEM)图以及透射电子显微镜(TEM) 图如图 1b-d所示,CD-MOF 是由纳米和微米结构组成的立方体,具有光滑的表面,尺寸约为 200 nm-1 μm,负载Co离子后,其形貌几乎不变(图 1e-g)。
图1. (a)CD-MOF、金属负载的CD-MOF以及M-N-C催化剂的制备示意图,其中插图为:(i)CD二聚体的三种可能取向(HH、HT和TT);(ii iii)基于分子动力学和实验结果提出的通过γ-CD通道生长的CD-MOF和M-CD-MOF纳米结构的形成机制;(b-d)CD-MOF和(e-g)Co-CD-MOF的FE-SEM和TEM图像。
II 催化剂的成分与微观结构表征CD-MOF负载了3种不同的过渡金属(Co、Fe、Cu)后进行碳化得到了目标催化剂M-N-C。采用一系列手段系统的表征了催化剂的成分与结构(图2)。其中X射线吸收光谱测试结合TEM分析表明,催化剂同时包含金属单原子及纳米颗粒(颗粒成分为金属碳化物MCx)。理论计算表明,金属单原子与邻近的纳米颗粒存在强相互作用,相互改变其d轨道电子密度,从而提升ORR/OER的综合性能。图2. (a-b) XRD衍射图;(c) N₂吸附-解吸等温线和(d)MDC的拉曼光谱,Co@C-CoNC, Fe@C-FeNC和Cu@C-CuNC催化剂;R空间中的归一化K边XANES和K边傅里叶变换EXAFS:(e-f)Co@C-CoNC,(g-h)Fe@C-FeNC和(i-j)Cu@C-CuNC催化剂及其相应的金属箔、金属氧化物和金属酞菁(MPc)作为参考;(k) EXAFS小波变换Co@C-CoNC催化剂及其相应的参考样品;(l) M-N-C催化剂的EXAFS k空间拟合曲线和(M)N1s核心级XPS光谱Co@C-CoNC催化剂。
III ORR催化性能所合成的催化剂表现出四电子(4e⁻)主导的ORR途径。如图3所示,Fe@C-FeNC和Co@C-CoNC表现出优异的ORR活性,半波电位为0.917 和0.906 V,高于商业Pt/C催化剂(0.861 V)以及Cu@C-CuNC (0.829 V)。1600 rpm时Fe@C-FeNC的起始电位约为1.025 V,该值高于Co@C-CoNC,Cu@C-CuNC和Pt/C。此外,Co@C-CoNC、Fe@C-FeNC、Cu@C-CuNC和Pt/C 在0.2 V时的扩散电流(Jd)分别约为–6.18、–6.07、–5.75和–6.07 mA cm⁻2。在这些催化剂中,Fe@C-FeNC表现出最佳ORR催化活性,而Co@C-CoNC稍逊。此外Fe@C-FeNC和Co@C-CoNC塔菲尔斜率为64 和65 mV dec⁻1,低于Pt/C(67 mV dec⁻1)。图3. (a) 固定转速各催化剂的ORR极化曲线和(b)其对应的Tafel图;(c) 电子转移数和H₂O₂产率;不同转速下的ORR极化曲线:(d)Co@C-CoNC,(e)Fe@C-FeNC和(f)Cu@C-CuNC;(g) 0.85V时的Jk 和E1/2;(h) 0.67 V下的耐久性试验;(i)与文献数据的比较。
IV OER催化性能所制备的催化剂同时表现出优异的OER催化活性(图4)。Co@C-CoNC的OER活性优于Fe@C-FeNC和Cu@C-CuNC,而与RuO₂接近。在10 mA cm⁻2下,Co@C-CoNC、Fe@C-FeNC、Cu@C-CuNC和RuO₂的过电位分别约为0.408、0.518、1.010和0.360 V,Tafel斜率分别为约73、151、371和84 mV dec⁻1。此外Co@C-CoNC催化剂也表现出良好的稳定性,运行10000秒后活性损失约21%。耐久性试验后M-N-C的XPS光谱表明,催化剂显示出几乎相同的化学成分,降解可忽略不计。图4. (a) 各催化剂的OER极化曲线和(b)其相应的Tafel图;(c)0.43 V下的耐久性测试;(d) LSV极化曲线;(e)与文献数据的比较;(f) 各催化剂的ORR/OER双功能特性;(g) ORR和OER的活性位点示意图。
V 基于Co@C-CoNC的锌空电池的性能以ORR/OER综合性能较优的Co@C-CoNC为阴极催化剂组装了可充电锌空气电池(图5)。Co@C-CoNC的ZAB开路电压为1.53 V,高于商业催化剂组合Pt/C+RuO₂(1.50 V)。在1.0 V下,电流密度为97.7 mA cm⁻2,高于Pt/C+RuO₂(86.5 mA cm⁻1)。同时,所组装的ZAB具有162.8 mW cm⁻2(电流为270.3 mA cm⁻2)的功率密度,而基于Pt/C+RuO₂阴极的功率密度在265.8 mA cm⁻2时仅为158.9 mW cm⁻2。在10 mA cm⁻2的恒电流放电时,可在140小时内稳定输出1.2V的电压而没有明显的衰减。同时, 10.0 mA cm⁻2时的比容量高达810 mAh g⁻1,其能量密度达到945 Wh kg⁻1。图5. (a) ZAB示意图;(b)开路图;(c)ZAB的充电和放电极化曲线以及相应的功率密度;(d) 恒电流放电曲线和(e)10 mA cm⁻2下ZAB的比容量;(f) 2 mA cm⁻2下ZAB的充放电循环稳定性。
作者简介
本文第一作者
Development of novel energy materials for energy conversion and storage applications including both experimental and DFT aspects of; (i) HER, ORR/OER and (ii) photocatalysis。
▍主要研究成果
▍Email:chandru@glut.edu.cn
本文通讯作者
(1)碳基能源材料;(2)电化学金属资源回收。
▍主要研究成果
▍Email:Denglb@szu.edu.cn
关于我们
Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、在Springer Nature开放获取(open-access)出版的学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, perspective, highlight, etc),包括微纳米材料与结构的合成表征与性能及其在能源、催化、环境、传感、电磁波吸收与屏蔽、生物医学等领域的应用研究。已被SCI、EI、PubMed、SCOPUS等数据库收录,2021JCR影响因子为 23.655,学科排名Q1区前5%,中科院期刊分区1区TOP期刊。多次荣获“中国最具国际影响力学术期刊”、“中国高校杰出科技期刊”、“上海市精品科技期刊”等荣誉,2021年荣获“中国出版政府奖期刊奖提名奖”。欢迎关注和投稿。
Web: https://springer.com/40820
E-mail: editor@nmlett.org
Tel: 021-34207624
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 深圳大学邓立波等:金属单原子与纳米颗粒协同调控d电子增强ORR/OER催化性能