https://doi.org/10.1007/s40820-022-00955-w
本文亮点
1. 通过电化学表面处理和磷化工艺可在无定形磷酸铁覆盖层中诱导焦磷酸铁局部结晶。
2. 混合覆盖层(FePy@FePi)可显著增强PEC性能,且具有长期稳定性。
3. FePy纳米晶限域在FePi无定形覆盖层中形成的混合异质结构大大克服了水氧化中的能垒。
内容简介
随着化石燃料储量的减少和环境污染的加剧,对清洁和可持续能源的需求不断增加,这促使人们寻找替代品来减少碳排放。光电化学(PEC)太阳能水分解是生产清洁H₂的替代方案。实现高效太阳能水分解需要克服缓慢析氧动力学,这样开发的光阳极材料才具有成本效益和环保属性。通过引入助催化剂或钝化层进行表面改性被认为是一种有效的策略,它可以改善表面状态并改善反应动力学。在这项研究中,韩国成均馆大学Jung Kyu Kim课题组将纳米晶焦磷酸铁(FePy)与无定形磷酸盐结合形成新型混合覆盖层(FePy@FePi),从而显著提高原始过渡金属氧化物光阳极的PEC水分解性能。
图文导读
不使用其他任何掺杂剂的前提下,作者首先使用简单的水热合成方法在FTO玻璃表面合成出了原始α-Fe₂O₃NRs。FePy@FePi杂化覆盖层的合成借助了化学气相沉积 (CVD)介导的表面磷化。首先进行30分钟电化学表面预处理,该步之后进行磷化。作为比较,传统的FePi覆盖层也使用类似的CVD介导表面磷酸盐化的方式在相同的基板材料上合成,但不进行任何电化学表面预处理。FePy@FePi杂化覆盖层修饰后的α-Fe₂O₃纳米棒示意图和SEM图像如图1a-b所示,FePy@FePi杂化覆盖层的高角度环形暗场(HAADF)扫描TEM(STEM)图像(图1c)清楚地显示了暗区和亮区,TEM明场(BF)图像也显示了覆盖层的有着非常显着的差异(图1d)。HR-TEM图像显示FePy@FePi杂化覆盖层具有非晶结构,非晶层中有一些暗区(图1e)。此外,图1e中的HRTEM图像清楚地显示了一系列晶格条纹,进一步放大覆盖层和块体的界面后,可以看出覆盖层中的暗区是分离的纳米晶相。为了进一步确认纳米晶相的结构特征,进行了TEM和EDS研究,为元素的原子级排列提供直接证据。与覆盖层和块体中的结晶相匹配的快速傅里叶变换(FFT)分别如图1f-g所示。因为FFT图像提供了原子序数相关的Z衬度,所以覆盖层主体区域是α-Fe₂O₃,并且可以确认覆盖层中的结晶相是焦磷酸铁(Fe₄(P₂O₇)₃)。此外,根据EDS光谱提供的元素比例(图1h),可以确认焦磷酸盐化合物(P₂O₇)存在于覆盖层的纳米晶相中。
图1. (a)合成示意图;(b)扫描电镜图像;(c)HAADF-STEM图像;(d, e)FePy@FePi修饰的纳米棒的TEM-BF图像;(f, g)从(e)获得的FFT图像;(h)从(f)和(g)获得的EDS元素光谱。
II FePy@FePi混合覆盖层的结构表征
图2分别为FePi和FePy@FePi装饰样品的XRD图谱和XPS光谱。XRD信息(图2a)中没有显示任何磷酸铁化合物的衍射峰,推测是因为覆盖层太薄而无法获得可靠的结果。电化学预处理后的α-Fe₂O₃(e-Fe₂O₃)的图案在64.33°处出现衍射峰,这与FeOOH物种有关,表明了电化学预处理后的表面氧化。图2b证实了这四个光电阳极中存在Fe³⁺、Fe²⁺以及FeOOH物种。此外,在FePi和FePy@FePi的光谱中,对应了Fe-O⁻P键的存在,表明磷化处理形成了超薄或无定形的铁(焦)磷酸盐层。在图2c中,FePi和FePy@FePi样品观察到焦/磷酸根离子(PᵪOᵧ)中的P⁻O键。由于在Fe 2p光谱中没有出现与Fe-P键相关的峰,因而P⁻P键归因于磷化过程中产生的磷物质。图2d中的O 1s光谱进一步证实了这一点,FePy@FePi的O 1s光谱中出现的Fe-O⁻P和P⁻O⁻P键,证实经过电化学预处理和磷化处理后样品表面出现了两种不同的磷酸盐。总之,通过整合e-Fe₂O₃的XPS光谱信息可以发现,电化学处理后的α-Fe₂O₃NRs表面产生了FeOOH,FeOOH相对富集的区域有利于磷化物的吸收,从而影响磷化处理。通过X射线吸收近边缘结构(XANES)和扩展X射线吸收精细结构(EXAFS)研究了FePy@FePi和FePi的电子结构和局部化学构型的差异,证实了FePy@FePi杂化覆盖层是由结晶 FePy 和非晶 FePi 组成的独特异质结构(如图2e所示)。
图2.(a) FePi 和 FePy@FePi 的 XRD 图谱;FePi和FePy@FePi的Fe 2p(b)、O 1s(c)和P 2p (d) XPS光谱;Fe箔、FePi和FePy@FePi的(e)XANES和(f)EXAFS光谱。
为了进一步阐明FePy@FePi和FePi覆盖层之间的差异,飞行时间二次离子质谱(ToF-SIMS)深度剖面(图3a-b)给出了FePi和FePy@FePi修饰的光阳极样品中包含FeO⁻、PO₂⁻、P⁻和O⁻离子的分子碎片信息。PO₂⁻和P⁻的信号来源于磷酸盐物质的分解,FePi修饰的光阳极的PO₂⁻和P⁻的强度随着相同的深度分布而迅速降低。然而,随着时间的推移,类似的信号在FePy@FePi修饰的光阳极中逐渐减少,并且PO₂⁻信号在FePy@FePi中保持其高强度的时间要更长,表明FePy@FePi和FePi覆盖层中磷酸盐物种的分解程度不同,是由不同种类的磷酸盐物种组成。
图3.(a), (b)ToF-SIMS深度剖析FePi和FePy@FePi的负离子极性;(c)α-Fe₂O₃、FePi和FePy@FePi的FT-IR光谱。
为了充分说明磷化过程中FePy@FePi杂化覆盖层的生成机制,通过DFT计算验证了α-Fe₂O₃磷化过程中产生的FePi和FePy相的热力学稳定性(图4)。我们可以假设FePy@FePi混合覆盖层的合成机制。电化学处理后,在α-Fe₂O₃ NRs表面产生FeOOH并导致部分活化。在活化区域中,可以形成疏水表面。由于磷化物物种难以吸附在疏水表面上,它们将在其他区域富集。在富P区,磷化过程中优先生成纳米晶FePy,而其他区域有利于非晶FePi的生成。
图4.(a) FePy、FePi和α-Fe₂O₃在Fe、P和O化学势变化下的相空间;(b)从α-Fe₂O₃到FePi和FePy相变的吉布斯自由能变化。
III 光电水氧化性能测试
图5. 合成样品的PEC性能。(a)在1 M NaOH电解液中,在黑暗和一个太阳光照强度下的J-V曲线;(b)在 1 M NaOH 电解液中,Fe₂O₃和FePi、FePy@FePi 在黑暗和一个太阳光照强度条件下在1.23 V的斩波电流密度与时间的J-t曲线;(c) 斩波光强下的开路电位曲线;(d) 用孔清除剂测量的J-V曲线;(e) 电荷转移效率(ηtransfer);(f) 制备的光阳极的电荷分离效率 (ηseparation)对电压的曲线。
IV 催化机制研究
图6. (a)在1 M NaOH电解液中, 1.23 V下一个太阳光照强度下的EIS表征的奈奎斯特图;(b)在 1 M NaOH电解液中,在黑暗条件下,制备光阳极的莫特-肖特基图;(c) FePy@FePi、FePi 和Fe₂O₃的电化学双层容量(Cdl);(d)制备的光阳极的O₂演化时间图;(e)在1 M NaOH电解液中, 1.23 V一个太阳光照条件下制备的光阳极的J-t曲线与20小时稳定性测试。
V DFT计算
图7. (a) DFT在U = 1.23 V、pH = 13.6的条件下,OER在结晶FePy、FePi和α-Fe₂O₃ (012) 表面的吸附自由能图;(b) FePi/FePy界面的平面平均差分电荷密度。
内容简介
用于光电化学和电化学电池的金属氧化物纳米结构。
本文通讯作者
成均馆大学 教授
纳米加工制造、先进能源纳米材料、光-电-化学能能源转化。
▍主要研究成果
Jung Kyu Kim教授于2018年加入韩国成均馆大学化工学院,主要研究方向为纳米加工制造、先进能源纳米材料、光-电-化学能能源转化。他担任韩国国内多个研究委员会委员,在国际学术期刊上发表SCI论文近100篇、被引用近4000次, 包括Advanced Energy Materials、Energy and Environmental Science、ACS Nano、ACS Energy Letters等期刊。
关于我们
Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、在Springer Nature开放获取(open-access)出版的学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, perspective, highlight, etc),包括微纳米材料与结构的合成表征与性能及其在能源、催化、环境、传感、电磁波吸收与屏蔽、生物医学等领域的应用研究。已被SCI、EI、PubMed、SCOPUS等数据库收录,2021JCR影响因子为 23.655,学科排名Q1区前5%,中科院期刊分区1区TOP期刊。多次荣获“中国最具国际影响力学术期刊”、“中国高校杰出科技期刊”、“上海市精品科技期刊”等荣誉,2021年荣获“中国出版政府奖期刊奖提名奖”。欢迎关注和投稿。
Web: https://springer.com/40820
E-mail: editor@nmlett.org
Tel: 021-34207624
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 成均馆大学Jung Kyu Kim等:表层焦磷酸铁纳米晶促进光电水氧化