能源材料 第3页

NML文章集锦| 超级电容器

15

Nano-Micro Letters 发布于 2023-10-28

一、专辑介绍 储能器件:储能器件是一种能够将电能、化学能等能量转化为另一种形式并储存的装置。储能器件的种类较多,包括超级电容器、锂离子电池、液流电池等。这些储能器件在不同领域中发挥着重要作用,如在新能源发电中,储能器件可以平衡电网负荷,提高供电可靠性和电力系统稳定性;在电动汽车...

阅读(584)赞 (0)

韩国全南国立大学Do-Heyoung Kim等:引入肖特基结大幅提高固态超级电容器能量密度

12

Nano-Micro Letters 发布于 2023-10-26

研究背景 超级电容器具有长寿命、能量密度高、充电速度快、元素丰富和与其他应用兼容性高等优点。基于赝电容反应的充放电系统中的快速可逆表面氧化还原反应,使其具有更高的能量密度和更广泛的应用前景。在实际应用中,电极通过双电层与赝电容两种机制存储电荷,以提供高的能量输出。然而负极比...

阅读(654)赞 (0)

NML文章集锦| 储能器件研究(八篇综述)

17

Nano-Micro Letters 发布于 2023-10-25

一、专辑介绍 储能器件:储能器件是一种能够将电能、化学能等能量转化为另一种形式并储存的装置。储能器件的种类较多,包括超级电容器、锂离子电池、液流电池等。这些储能器件在不同领域中发挥着重要作用,如在新能源发电中,储能器件可以平衡电网负荷,提高供电可靠性和电力系统稳定性;在电动汽车...

阅读(590)赞 (0)

物理所王雪锋&王兆祥等:解析锂电池快充中石墨电极的动力学极限

10

Nano-Micro Letters 发布于 2023-10-21

研究背景 实现锂离子电池更安全、更快速的充电对诸如电动汽车等电动工具的推广应用具有十分重要的意义。然而,Li⁺插层的缓慢动力学限制了其快速嵌入石墨层中。在使用较高倍率充/放电时,石墨负极具有较大的极化和较小的嵌锂容量,同时还伴随着一些副反应,如锂金属的沉积、较厚固体电解质(...

阅读(782)赞 (0)

深圳大学时玉萌等:从单一钙钛矿材料中获得荧光量子产率接近100%的色温可调白光发射

9

Nano-Micro Letters 发布于 2023-09-26

研究背景 低维金属卤化物所具备的独特的自陷态激子(self-trapped excitons,STEs)常表现出可覆盖全部可见区的超宽光谱以及将近100%的超高量子效率,是实现单一材料白光的理想材料。近年来,以宽谱自陷态激子发光为主发射,通过共掺杂引入“互补色”辅助发光的策...

阅读(932)赞 (0)

NML文章集锦 | 钙钛矿材料研究论文(六)

15

Nano-Micro Letters 发布于 2023-09-21

一、专辑介绍 钙钛矿太阳能电池:作为一种半导体异质结结构光电器件,钙钛矿太阳能电池通过钙钛矿光吸收层、电荷传输层等半导体材料组成的异质结结构来有效分离和提取光生电荷,实现由光能向电能的转换。钙钛矿太阳能电池作为一种新型光伏技术,具有成本低、效率高的特点。 钙钛矿发光器件:...

阅读(674)赞 (0)

NML文章集锦 | 钙钛矿材料研究论文(五)

23

Nano-Micro Letters 发布于 2023-09-18

一、专辑介绍 钙钛矿太阳能电池:作为一种半导体异质结结构光电器件,钙钛矿太阳能电池通过钙钛矿光吸收层、电荷传输层等半导体材料组成的异质结结构来有效分离和提取光生电荷,实现由光能向电能的转换。钙钛矿太阳能电池作为一种新型光伏技术,具有成本低、效率高的特点。 钙钛矿发光器件:...

阅读(649)赞 (0)

浙大姜银珠等:氨基和羧基协同“锚定-捕获”构建锌负极稳定界面

9

Nano-Micro Letters 发布于 2023-09-15

研究背景 水系锌离子电池已被公认为是大规模储能应用中最具前景的电池体系之一,但锌负极-电解液界面的不稳定性极大地制约了其进一步发展。本文提出了一种基于甘氨酸(Gly)分子中氨基和羧基的协同“锚定-捕获”机制有效稳定负极的界面化学。通过同步耦合氨基在锌负极表面的锚定作用和羧基...

阅读(1669)赞 (0)

湖南大学鲁兵安等:调控K⁺通量自由度实现安全、长寿命钾离子电池

9

Nano-Micro Letters 发布于 2023-09-10

研究背景 钾离子电池电解液中离子的自由运动需要游离的有机溶剂分子协助,但有机溶剂分子的易燃性影响电池的安全。本文提出降低钾离子自由度的策略,开发了一种钾离子通量“整流器”电解质,通过降低有机溶剂分子的含量,将电解质中的钾离子的自由度修整并降低为1,实现了钾离子电池电化学性能...

阅读(756)赞 (0)

NML文章集锦 | 钙钛矿材料综述(二)

15

Nano-Micro Letters 发布于 2023-09-06

一、专辑介绍 钙钛矿太阳能电池:作为一种半导体异质结结构光电器件,钙钛矿太阳能电池通过钙钛矿光吸收层、电荷传输层等半导体材料组成的异质结结构来有效分离和提取光生电荷,实现由光能向电能的转换。钙钛矿太阳能电池作为一种新型光伏技术,具有成本低、效率高的特点。 钙钛矿发光器件:...

阅读(793)赞 (0)

NML文章集锦 | 钙钛矿材料综述(一)

13

Nano-Micro Letters 发布于 2023-09-04

一、专辑介绍 钙钛矿太阳能电池:作为一种半导体异质结结构光电器件,钙钛矿太阳能电池通过钙钛矿光吸收层、电荷传输层等半导体材料组成的异质结结构来有效分离和提取光生电荷,实现由光能向电能的转换。钙钛矿太阳能电池作为一种新型光伏技术,具有成本低、效率高的特点。 钙钛矿发光器件:...

阅读(820)赞 (0)

上海大学丁常胜和高彦峰等综述:锰基电极材料在水系钠离子电池中的研究进展

22

Nano-Micro Letters 发布于 2023-09-03

研究背景 水系钠离子电池由于具有成本低、安全性高、环保、资源丰富等优点,在大规模储能领域展现了广阔的应用前景。锰基电极材料具有资源丰富、成本低、无毒、环境友好、良好的电化学性能等特点,受到广泛的关注。本文从正极材料和负极材料两方面系统地介绍了水系钠离子电池用锰基电极材料,综...

阅读(1059)赞 (0)

NML专题 | 导热功能材料

29

Nano-Micro Letters 发布于 2023-09-02

一、专辑介绍 导热功能材料在电力设备、电力电子器件、5G通信等方面的应用日益显著。近年来,特高压电力设施和5G通信的快速发展,对材料(特别是绝缘材料)的导热性能提出了更高的要求,亟需开发出具有更高导热性能的先进功能材料。 本推文简介:精选14篇2022-2023年发表在N...

阅读(768)赞 (0)

NML综述 | 多功能钙钛矿光电探测器—从分子尺度结构设计到微/纳米尺度形貌调控

18

Nano-Micro Letters 发布于 2023-08-21

研究背景 光电探测器作为智能光电系统中的核心组成元件已被广泛地应用于光学成像、光通信、传感等传统领域,并推动了人工智能新兴领域的发展。金属卤化物钙钛矿因其结构多样、带隙可调、载流子迁移率高、光吸收系数大、易于溶液加工以及与柔性衬底的强相容性等特点在发展高性能、多功能光电探测...

阅读(3425)赞 (0)

中南大学阳军亮等:结晶和取向调控实现刮涂制备高效率钙钛矿太阳电池

10

Nano-Micro Letters 发布于 2023-08-17

研究背景 随着钙钛矿太阳电池光电转化效率的迅速提高,开发可扩展的沉积技术以加速钙钛矿太阳电池商业化应用势在必行。本文引入甲基氯化铵添加剂调控两步法刮涂制备钙钛矿薄膜的结晶和晶体取向,实现高质量、强取向的钙钛矿薄膜,空气环境刮涂实现了光电转化效率23.14%器件及光电转化效率...

阅读(1307)赞 (0)

南开大学袁忠勇教授:杂原子掺杂引发有利的析氢/肼氧化反应动力学用于肼辅助电解水和锌-肼电池

7

Nano-Micro Letters 发布于 2023-07-30

研究背景 使用肼氧化反应(HzOR)替代发生在电解水阳极上的析氧反应(OER)可以大幅降低所需电压。本文报道了一种磷/铁共掺杂的硒化镍材料,可以作为一种双功能电催化剂,同时加速析氢反应(HER)和HzOR的反应动力学。该材料仅需-168和200 mVRHE的电势就可以分别在...

阅读(807)赞 (0)

中国科学技术大学钱逸泰院士团队和甬江实验室林宁研究员团队:一种双壳层氮/氧共掺杂空心多孔碳微球助力钾离子混合电容器

7

Nano-Micro Letters 发布于 2023-07-26

双碳钾离子混合电容器(PIHC)具有能量/功率密度高、循环寿命长、成本低等优点,在储能领域具有巨大的应用潜力。本文采用自模板法制备了一种新型的双壳层氮/氧共掺杂空心多孔碳微球(NOHPC),其由致密的薄壳和空心多孔球核组成。令人兴奋的是,NOHPC作为钾离子电池负极时在0.1 A...

阅读(1014)赞 (0)

北京工业大学王乃鑫&安全福/斯德哥尔摩大学袁家寅等:多孔LDH膜中原位生长MOF实现纳米缺陷到锂离子传质通道的转变

11

Nano-Micro Letters 发布于 2023-07-19

研究背景 膜分离技术在锂离子提取领域具有较大的应用潜力,然而设计和制备高离子选择性和高渗透性的膜材料仍然是一个巨大的挑战。本文将金属-有机骨架(MOF)材料原位生长在修饰后的层状双金属氢氧化物(MLDH)膜框架缺陷孔中,将纳米尺度的框架缺陷转变为锂离子传质通道,形成ZIF-...

阅读(1349)赞 (0)