Qiuwei Shi, Izzat Aziz, Jin-Hao Ciou, Jiangxin Wang, Dace Gao, Jiaqing Xiong, Pooi See Lee*
Nano-Micro Letters (2022)14: 195
1. 通过原子层沉积技术在温度相对较低的150℃下开发出稳定的叠层Al₂O₃/HfO₂绝缘层。
2. 在具有Al₂O₃/HfO₂绝缘层的柔性基底上进一步制备底栅顶接触的柔性薄膜晶体管(TFT)。
3. 柔性TFT的载流子迁移率为9.7 cm2V⁻1s⁻1,开/关比约为1.3 × 10⁶,亚阈值电压为0.1 V,饱和电流高达0.83 mA,亚阈值摆幅为0.256 Vdec⁻1。
内容简介
柔性薄膜晶体管(TFT)在柔性可穿戴的显示器或传感器的开发中引起了广泛的关注。然而,传统的高温加工工艺阻碍了在柔性基底上制备稳定可靠的介电材料。新加坡南洋理工大学的Pooi See Lee教授团队通过原子层沉积在温度相对较低的150℃下开发了一种稳定的叠层Al₂O₃/HfO₂绝缘层。该工作采用化学计量比为In0.37Ga0.20Zn0.18O0.25的溅射非晶铟镓锌氧化物(IGZO)用作有源沟道材料。在具有Al₂O₃/HfO₂绝缘层的柔性聚酰亚胺基底上进一步制备底栅顶接触的柔性TFT。得益于由非晶Al₂O₃、结晶HfO₂和铝酸盐Al-Hf-O相组成的纳米叠层中独特的结构和成分,所制备的TFT呈现出9.7 cm2V⁻1s⁻1的载流子迁移率,开/关比约为1.3 × 10⁶,亚阈值电压为0.1 V,饱和电流高达0.83 mA,亚阈值摆幅为0.256 Vdec⁻1,这意味着该TFT是一种高性能的柔性TFT,并且其能够承受40 mm的弯曲半径。这种具有纳米叠层绝缘层的TFT在相对湿度为60-70%、温度为25-30℃的环境中具有优异的湿度稳定性和滞后特性。除此之外,这种Al₂O₃/HfO₂纳米叠层介电增强IGZO基柔性TFT还具有高达95%的高产率,在商用大规模制备领域展现出潜在的应用前景。
在本研究中,所有具有底栅顶接触结构的TFT都是通过典型的光刻工艺制备的。受到纳米叠层结构可以制备高密度、防潮、抗氧化的柔性薄膜的启发,通过控制ALD工艺的处理步骤,制造出了具有不同层数的叠层Al₂O₃/HfO₂绝缘层。具体每一层的制备程序和相关参数如图1(a)所示。图1(b)中给出的是所制备出的TFT器件的光学显微图像,从图像中可以测算出该器件的有效沟道长度为20 μm、宽度为100 μm。将PI基底从硅片上剥离后,弯曲半径为40 mm的柔性PI基TFT如图1(c)所示。
图1. (a) 含叠层Al₂O₃/HfO₂绝缘层的基于IGZO的TFT制造流程示意图,包括各层的厚度信息;(b) 制备好的TFT器件的显微图像;(c) 柔性基底上具有Al₂O₃/HfO₂绝缘层的TFT照片。
II 叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的电气性能测试
为了证明基于IGZO的TFT性能,将采用150℃的ALD沉积的不同绝缘层TFT的电气性能进行了比较,绘制图像如图2所示。图2(a)、(d)和(g)分别显示了叠层Al₂O₃/HfO₂、HfO₂和Al₂O₃三种绝缘层的TFT的传输特性,其中叠层Al₂O₃/HfO₂的最大通电电流高达0.7 mA,分别比HfO₂和Al₂O₃绝缘层的TFT高出350%和260%。如图2(b)、(e)、(h)所示,三种绝缘层TFT的阈值电压分别为0.1 V、2.1 V和1.7 V。图2(c)、(f)、(i)显示了叠层Al₂O₃/HfO₂、HfO₂和Al₂O₃三种绝缘层TFT的输出特性,其中施加的VGS范围为2-10 V,步长为2 V。从图中可以看出,三个样品的饱和电流和夹断区域清晰可见,表明VGS可以很好地控制通道电流。并且这三种TFT无电流拥挤效应也表明源漏极和导电沟道接触良好。在10 V的VGS下,带有叠层Al₂O₃/HfO₂绝缘层的TFT的IDS(0.42 mA)至少比带有HfO₂(0.18 mA)和Al₂O₃(0.13 mA)绝缘层的TFT大两倍,这可能归功于叠层Al₂O₃/HfO₂的热力学稳定性、高密度和良好的耐腐蚀性以及较高的饱和载流子迁移率。
图2. 采用不同绝缘层制备的IGZO基TFT的传输特性、IDS曲线和输出特性:(a)-(c) 叠层Al₂O₃/HfO₂;(d)-(f) HfO₂;(g)-(i) Al₂O₃。
III Al₂O₃/HfO₂纳米叠层的形貌和微观结构表征
为了表征150℃下通过ALD沉积的Al₂O₃/HfO₂纳米叠层的形貌和微观结构,对TFT器件的IGZO/Al₂O₃/HfO₂层进行了横截面TEM‑EDS分析。首先使用双光束FIB系统制备的样品SEM图像如图3(a)所示。图3(b)显示了Al₂O₃/HfO₂纳米叠层的横截面TEM图像,从图中可以观察到五层总厚度约为20nm的浅色层(Al₂O₃)和暗色层(HfO₂)的堆叠结构,界面粗糙度小,厚度均匀性良好。从图3(c)中的HRTEM可以看出Al₂O₃层为非晶态,而HfO₂的晶格条纹可以被清楚地观察到,表明它是结晶状态。此外,图3(d)中的FFT衍射图案也明显证明了HfO₂层的单晶性质。如图3(e)所示,IGZO/Al₂O₃/HfO₂提取的横截面EDS图明确显示了Zn、In、Ga、Al、Hf、C和O元素的分布。图3(f–i)分别显示了Hf、Al、In和O元素的EDS图。
图3. (a) FIB制备的TEM样品的SEM图像;150℃下通过ALD制备的叠层Al₂O₃/HfO₂绝缘层的横截面(b) TEM和(c) HRTEM;(d) 从c图中虚线区域获得的快速傅里叶变换(FFT)衍射图案;(e) 元素Zn、In、Ga、Al、Hf、C和O的横截面TEM-EDS元素映射图;(f-i) Hf、Al、In和O的EDS映射图。
IV Al₂O₃/HfO₂纳米叠层的元素组成和化学分析
图4. (a) 制备出的叠层Al₂O₃/HfO₂、HfO₂和Al₂O₃绝缘层的X射线光电子能谱;叠层Al₂O₃/HfO₂和Al₂O₃的高分辨(b)O 1s和(c)Al 2p光谱;(d) 叠层Al₂O₃/HfO₂和HfO₂的高分辨Hf 4f光谱;(e) 界面处具有非晶态Al₂O₃、结晶HfO₂和铝酸盐(Al-Mg-O)相的Al₂O₃/HfO₂纳米叠层示意图。
V 叠层Al₂O₃/HfO₂绝缘层的柔性TFT的弯曲性能测试
PI基底上的柔性TFT由150℃ ALD沉积的Al₂O₃/HfO₂纳米叠层制成。如图5(a)所示,可在弯曲半径为40 mm的弯曲表面上测试具有Al₂O₃/HfO₂纳米叠层的PI基柔性TFT。图5(b)显示了固定VDS为3 V的PI基柔性TFT的传输特性。器件的泄漏电流在10-9 A范围内,最大Ion高达0.83 mA,得到的开关电流比大于106。由图5(c)中IDS和VGS的交点可以提取出阈值电压为2.8 V。图5(d)显示了输出特性,施加的VGS从2 V增加到10 V,步长为2 V,从输出特性曲线中可以观察到饱和的IDS,且在10 V的VGS下IDS高达0.72 mA。图5(e)显示了在40 mm弯曲半径下重复弯曲100次后所制备的柔性IGZO基TFT的传输特性。此外,图5(f)还总结了制备TFT的稳定最大IDS和平均栅泄漏。IGZO基柔性TFT的这些电气性能显示了其良好的柔性和耐久性。
图5. (a) 在弯曲半径为40 mm的弯曲表面上测试含Al₂O₃/HfO₂纳米叠层的PI基柔性TFT的照片;在40 mm弯曲半径下测试的柔性TFT的(b)传输特性,(c)IDS曲线以及(d)输出特性;在40 mm的弯曲半径下重复弯曲100次后,IGZO基柔性TFT的(e)传输特性、(f)最大IDS和平均IGS。
VI 叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的湿度稳定性和产率
通过将器件在实验室环境中(相对湿度为60-70%,温度为25-30℃)储存不同的时间,研究了制备的叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的湿度稳定性和滞后特性。如图6(a)所示,叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的栅极泄漏保持稳定,约为10-10 A。同时,TFT在相对湿度为60–70%、温度为25–30℃的环境中暴露48 h后,表现出理想的传输行为,只具有较小的滞后特性。此外,还对叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的可靠性进行了研究。如图6(b)所示,一共测试了7组共49个IGZO基的TFT单元,只有第3组和第4组中的两个单元受损,其他47个单元工作良好,平均最大IDS为0.79 mV,叠层Al₂O₃/HfO₂绝缘层的IGZO基TFT的产率高达95%。
图6. (a) 叠层Al₂O₃/HfO₂绝缘层的柔性TFT在原始状态以及在实验室环境(相对湿度为60-70%,温度为25-30℃)中分别存储6 h、24 h、48 h后的传输特性和滞后特性;(b) 3D条形图显示了7组(每组7个单元)的IGZO基TFT的最大IDS。
本文第一作者
本文第一作者
本文通讯作者
▍主要研究成果
▍Email:pslee@ntu.edu.sg
撰稿:原文作者
Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、在Springer Nature开放获取(open-access)出版的学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, perspective, highlight, etc),包括微纳米材料与结构的合成表征与性能及其在能源、催化、环境、传感、电磁波吸收与屏蔽、生物医学等领域的应用研究。已被SCI、EI、PubMed、SCOPUS等数据库收录,2021JCR影响因子为 23.655,学科排名Q1区前5%,中科院期刊分区1区TOP期刊。多次荣获“中国最具国际影响力学术期刊”、“中国高校杰出科技期刊”、“上海市精品科技期刊”等荣誉,2021年荣获“中国出版政府奖期刊奖提名奖”。欢迎关注和投稿。
Web: https://springer.com/40820
E-mail: editor@nmlett.org
Tel: 021-34207624
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 南洋理工P.S.Lee团队:低温原子层沉积纳米叠层介电增强柔性薄膜晶体管性能