Nano-Micro Letters (2021) 13: 157
https://doi.org/10.1007/s40820-021-00680-w
2. 与传统磁性颗粒易于团聚的现象相比,MXene-CNTs/Ni复合物表现出高度分散的空间磁结构。
3. MXene-CNTs/Ni复合材料具有出色的微波吸收性能(-56.4 dB,涂层厚度为2.4 mm)。
图1. MXene-CNTs/Ni复合物的合成流程示意图。
图2. (a) CNTs/Ni、MXene、MXene-alk、MXene-CNTs/Ni和MXene-N的XRD图谱,(b) 图(a)的放大图,(c) 五种不同材料的晶格模型图。
图3. (a) MAX、(b) MXene、(c) MXene-alk、(d-f) MXene-CNTs/Ni的SEM图。
图4. MXene的(a) TEM图和(b) HRTEM图,MXene-alk的(c) TEM图和(d) HRTEM图,CNTs/Ni的(e) TEM图和(f, g) HRTEM图,MXene-CNTs/Ni的(h) TEM图和(i) SAED图,MXene-CNTs/Ni的(j) STEM图和相对应的元素分布图:(k) C,(l) Ni和(m) Ti。
由于不足的介电损耗能力和缺乏的磁损耗能力,MXene和MXene-N表现出差的吸波性能。CNTs/Ni同样表现出较差的吸波性能,在5.2 GHz时具有-22.3 dB的最强反射损耗值,其原因是过高介电损耗值所引起的阻抗匹配条件失衡。相比之下,MXene-CNTs/Ni具有优异的吸波性能,在厚度仅为2.4 mm时反射损耗值高达-56.4 dB,当进一步调整厚度为1.5 mm时,其有效吸收带宽为3.95 GHz(图5)。
图5. (a) MXene、(b) MXene-N、(c) CNTs/Ni和(d) MXene-CNTs/Ni的反射损耗值随频率与涂层厚度变化3D图,(e) 四种不同材料在其各自具有的最强反射损耗值下随频率变化曲线图,(f)四种不同材料的反射损耗值随频率与涂层厚度变化柱状图。
MXene-CNTs/Ni复合材料相关的微观吸收机制主要包括以下几个方面:
i) 高度分散的空间Ni颗粒所形成的环绕型磁耦合网络。具有大量连接点的竹节状CNTs一方面可以牢固的支撑和分离嵌入的磁性Ni颗粒,另一方面一维CNTs的限域作用合理地调节了Ni颗粒的最佳尺寸,同时解决了磁性颗粒易于聚集和大小不均一的问题。电子全息结果显示镶嵌其中的Ni颗粒显示出高密度的磁力线,并可穿透介电碳壁向自由空间发散,证实了该混合物向外表现出磁性,具备了磁损耗能力。在MXene-CNTs/Ni体系中,高长径比的CNTs可“桥连”非磁性的MXene基底和磁性Ni颗粒,因此,空间高度分散的磁性颗粒环绕于每个独立存在的多层手风琴状介电单元,对外显示出磁性。相邻磁性颗粒间的磁力线发生相互交融的现象,以形成微米尺度上的磁耦合网络,超过了传统基于纳米尺度上的磁耦合行为。该强烈的磁感应信号会与入射电磁波发生强烈的相互作用,从而进一步提升MXene-CNTs/Ni三元复合体系的磁损耗能力。
ii) 三元复合物间大量存在的异质界面与缺陷位点。磁损耗能力主要取决于磁性的强弱不同,界面极化和偶极子极化则共同贡献了材料的介电损耗能力。相较于二元体系,三元复合物在物相组成上具有更多的异质界面。图7中白色箭头所标注的区域为碳管上壁-Ni颗粒-碳管下壁,相应的电荷密度分布颜色为黄色-蓝色-黄色,代表了不同程度的电荷积累,对应的电荷种类为负电荷-正电荷-负电荷。值得注意的是,大量电荷会聚集在其界面处,证明了界面极化能力的增强。因此,在交变的电磁场下,大量载流子会在大量异质界面处快速迁移和累积,共同导致了界面极化能力的提升。Ni颗粒在催化碳管原位生长的过程中不可避免的会产生大量的缺陷,我们利用几何相位分析技术对于Ni颗粒中的应变中心进行分析,如图7f中大量颜色反转点的出现,说明Ni颗粒中具有较多的晶体缺陷的存在。同时,MXene纳米片在经历HF刻蚀的过程中表面会携带许多官能团与缺陷位点(图7h),这些缺陷点可以被认为是偶极子活性位点,当电子经过这些位点时,会导致强烈的偶极子极化行为,使得三元MXene-CNTs/Ni复合材料具有明显提升的介电损耗能力。
图6. (a) CNTs/Ni的TEM图,(b) 磁力线分布图和(c) 相应的磁耦合网络示意图,(d) MXene-CNTs/Ni的TEM图,(e) 磁力线分布图和(f)相应的磁耦合网络示意图。
图7. CNTs/Ni的(a) TEM图,(b) 电荷密度分布图,(c) 电荷密度分布曲线图和(d) 相应的等效模型图, Ni颗粒的(e) HRTEM图和(f) 相应的应变图,MXene纳米片的(g) HRTEM图和(h) 相应的应变图。色标值从黑到白为从-0.5到+0.5。
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » “种子发芽状”MXene基复合物:通过极化与磁化增强微波吸收性能