本文亮点
研究背景
内容简介
图文导读
图1. (a)机械剥离过程;(b)液相剥离过程;(c)电化学剥离过程;(d)化学气相沉积过程。
II 黑磷的结构与性能
从扫描电子显微镜(图2a)来看,黑磷的结构与石墨烯类似,具有层状褶皱结构。层与层之间通过弱的范德华力相连接,这也是为什么我们可以通过自上而下的剥离法来获得磷烯。从它的原子结构(图2b)来看,每个磷原子通过强的共价键与临近的三个原子相连,在x方向形成Z字型,在z方向形成扶手椅状。这种晶型结构具有各向异性,赋予了黑磷在不同的晶向上不同的理化特性。
结构决定性能,二维结构的黑磷具有一系列极佳的性能。各向异性的力学性能,在x方向上黑磷的杨氏模量为0.166 TPa,z方向上为0.044 TPa,这种机械柔韧性使得磷烯在柔性电子、超轻材料等领域具有巨大的研究价值。优异的电学性能,黑磷最迷人的电学特性来自于它可调的能带结构,当黑磷由块状多层转变为少层磷烯时,其能带由0.3 eV转变为2.0 eV,载流子迁移率由220 cm2V−1 s−1跃升至1000 cm2V−1 s−1。这让黑磷具有介于导体与绝缘体之间的半导体特性,在传感器、光电等领域展现出极大的应用潜力。出色的电化学性能,黑磷较大的层间距为离子的插入提供了更大的空间;此外,黑磷的褶皱结构可以为Li+、Na+、Mg2+等离子提供超快的离子扩散通道。理论计算表明,黑磷具有2596 mAh/g的理论容量,远高于石墨的理论容量(372 mAh/g);同时,具有较高的工作电压(0.4-1.2 V),同样高于石墨(0-0.25 V)。
图2. (a)黑磷的扫描电子显微镜图;(b)黑磷的微观原子结构图。
III 黑磷的环境不稳定性及钝化
大量的实验研究表明,随着黑磷层数的减少,在环境条件下黑磷会表现出不稳定的特性。出现表面吸水、体积膨胀的现象(图3a),使其结构发生破坏,严重影响其理化性能。这是由于每个磷原子表面都存在孤对电子,使得P很容易与O2发生反应生成PxOy,造成环境不稳定性。因此,为了充分发挥磷烯的应用潜力,科研人员尝试通过一些钝化手段来提高其长期稳定性,例如包覆、表面修饰、掺杂等。
图3. (a)暴露在环境中不同的时间下的黑磷原子力学显微镜图。
IV 黑磷在锂离子电池领域的应用
黑磷的高理论比容量以及优良的电子传导性使其被认为是一种极佳的锂离子电池负极材料,在制备大容量、高倍率的锂离子电池方面展现出巨大的潜力。然而,在实际应用过程中发现,随着Li+不断地嵌入脱出,黑磷很容易出现体积膨胀的现象,造成容量衰减快、库伦效率低、可逆容量少等问题。因此,科研人员尝试将黑磷与其他材料相结合来构建黑磷基复合材料以解决循环过程中的体积膨胀问题。
V 总结
黑磷的高理论比容量以及优良的电子传导性使其被认为是一种极佳的锂离子电池负极材料,在制备大容量、高倍率的锂离子电池方面展现出巨大的潜力。然而,在实际应用过程中发现,随着Li+不断地嵌入脱出,黑磷很容易出现体积膨胀的现象,造成容量衰减快、库伦效率低、可逆容量少等问题。因此,科研人员尝试将黑磷与其他材料相结合来构建黑磷基复合材料以解决循环过程中的体积膨胀问题。
黑磷的二维结构赋予了它一系列优异的性能,在不同的领域已经展现出极大的应用潜力。然而,新事物的诞生总是伴随着机遇与挑战,我们对二维黑磷的了解尚浅,在黑磷实际应用的道路上,还有许多困难需要克服:
1. 在合成大尺寸高质量磷烯方面,二维黑磷的制备技术仍需进一步完善。
2. 克服二维黑磷的环境不稳定性是其能够广泛应用的关键,因此,急需弄清其环境下的降解机理,并继续探索钝化方法。
3. 黑磷在锂离子电池领域的实际应用存在挑战,其在循环过程中由于体积膨胀所造成的性能衰减问题亟待解决。
作者简介
朱继平
本文第一、通讯作者
合肥工业大学 教授
▍主要研究成果
在Proceedings of the National Academy of Sciences of the United States of America(PNAS),Chemical Communications和Chemistry of Materials等高影响力学术期刊以第一作者或通讯作者发表论文 50 余篇;获得授权中国发明专利3项;主编十三五规划教材《材料合成与制备技术》。
编辑:《纳微快报》编辑部
关于我们
如果文章对您有帮助,可以与别人分享!:Nano-Micro Letters » 二维黑磷:用于锂离子电池的新兴负极材料